Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.234
Filtrar
1.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento de Força , Humanos , Treinamento de Força/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
2.
Sci Rep ; 14(1): 9305, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653804

RESUMO

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , 60611 , Carioferinas , Linfoma Cutâneo de Células T , Receptores Citoplasmáticos e Nucleares , Triazóis , Proteína Supressora de Tumor p53 , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/genética , Apoptose/efeitos dos fármacos , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Triazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
FEBS Lett ; 598(8): 935-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553249

RESUMO

Chondrocyte differentiation is crucial for cartilage formation. However, the complex processes and mechanisms coordinating chondrocyte proliferation and differentiation remain incompletely understood. Here, we report a novel function of the adaptor protein Gulp1 in chondrocyte differentiation. Gulp1 expression is upregulated during chondrogenic differentiation. Gulp1 knockdown in chondrogenic ATDC5 cells reduces the expression of chondrogenic and hypertrophic marker genes during differentiation. Furthermore, Gulp1 knockdown impairs cell growth arrest during chondrocyte differentiation and reduces the expression of the cyclin-dependent kinase inhibitor p21. The activation of the TGF-ß/SMAD2/3 pathway, which is associated with p21 expression in chondrocytes, is impaired in Gulp1 knockdown cells. Collectively, these results demonstrate that Gulp1 contributes to cell growth arrest and chondrocyte differentiation by modulating the TGF-ß/SMAD2/3 pathway.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Inibidor de Quinase Dependente de Ciclina p21 , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Condrócitos/metabolismo , Condrócitos/citologia , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Condrogênese/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proliferação de Células , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Técnicas de Silenciamento de Genes , Pontos de Checagem do Ciclo Celular/genética
4.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398665

RESUMO

I propose a new strategy to suppress human cancer completely with two entirely new drug compounds exploiting cancer's Warburg effect characterized by a defective mitochondrial aerobic respiration, substituted by cytosolic aerobic fermentation/glycolysis of D-(+)-glucose into L-(+)-lactic acid. The two essentially new drugs, compound 1 [P(op)T(est)162] and compound 3 (PT167), represent new highly symmetric, four-bladed propeller-shaped polyammonium cations. The in vitro antineoplastic highly efficacious drug compound 3 represents a covalent combination of compound 1 and compound 2 (PT166). The intermediate drug compound 2 is an entirely new colchic(in)oid derivative synthesized from colchicine. Compound 2's structure was determined using X-ray crystallography. Compound 1 and compound 3 were active in vitro versus 60 human cancer cell lines of the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) 60-cancer cell testing. Compound 1 and compound 3 not only stop the growth of cancer cells to ±0% (cancerostatic effect) but completely kill nearly all 60 cancer cells to a level of almost -100% (tumoricidal effect). Compound 1 and compound 3 induce mitochondrial apoptosis (under cytochrome c release) in all cancer cells tested by (re)activating (in most cancers impaired) p53 function, which results in a decrease in cancer's dysregulated cyclin D1 and an induction of the cell cycle-halting cyclin-dependent kinase inhibitor p21Waf1/p21Cip1.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Ciclo Celular
5.
Biomed Pharmacother ; 173: 116284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394847

RESUMO

Until non-hormonal therapeutic targets for endometriosis are suggested, we focused on mitochondrial function and autophagy regulation in the disease. Transcrocetin is a carotenoid and retinoic acid with high antioxidant potency and antiproliferative effects in several diseases. In this study, we demonstrated the therapeutic mechanisms of transcrocetin in endometriosis using the End1/E6E7 and VK2/E6E7 cell lines. Transcrocetin suppressed the viability and proliferation of these cell lines and did not affect the proliferation of normal uterine stromal cells. p21 Waf1/Cip1 as a cell cycle regulator and target of p53, were increased by transcrocetin and caused the G1 arrest via inhibition of cyclin-dependent kinase activity, which might further cause cell death. Furthermore, we confirmed endoplasmic reticulum stress and calcium ion dysregulation in the cytosol and mitochondrial matrix, disrupting the mitochondrial membrane potential. Mitochondrial bioenergetics were suppressed by transcrocetin, and oxidative phosphorylation-related gene expression was downregulated. Moreover, the proliferation of End1/E6E7 and VK2/E6E7 cells was regulated by transcrocetin-induced oxidative stress. Finally, we verified the impairment of autophagic flux following pre-treatment with chloroquine. Therefore, transcrocetin may be a potent therapeutic alternative for endometriosis.


Assuntos
Endometriose , Vitamina A/análogos & derivados , Humanos , Feminino , Endometriose/metabolismo , Carotenoides/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Oxirredução , Autofagia , Apoptose
6.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338471

RESUMO

Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Antineoplásicos/farmacologia , Divisão Celular
7.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38348929

RESUMO

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , DNA Primase , Replicação do DNA , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Proteínas de Ligação a Telômeros , Raios Ultravioleta , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA Primase/metabolismo , DNA Primase/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Dano ao DNA
8.
Cell Biochem Funct ; 42(2): e3952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343018

RESUMO

This study uncovered the potential clinical value and molecular driving mechanisms of circular RNAs (circRNAs) in gallbladder cancer (GBC). Differentially expressed circRNAs in GBC cells were screened by high-throughput sequencing. CircRNA_CDKN1A (circBase ID: hsa_circ_0076194) was knocked out in BGC-SD cells through transfection with sh-circRNA_CDKN1A. Then, proliferation was investigated via CCK8 and EdU assays, apoptosis via flow cytometry, migration via wound healing assays, and invasion via Transwell assays. Bioinformatics analysis of circRNA_CDKN1A-related signaling pathways was performed using MetScape and g:Profiler. Results showed that the knockdown of circRNA_CDKN1A enhanced the proliferation, migration, and invasion of GBC cells and inhibited apoptosis. In addition, knocking out circRNA_CDKN1A promoted GBC cell proliferation and enhanced the dry indices of the OCT4 protein and CD34 expression levels. The knockdown of circRNA_CDKN1A activated the epithelial-mesenchymal transition pathway. Bioinformatics analysis revealed that the biological role of circRNA_CDKN1A in GBC cells involved the NF-κB pathway. LY2409881, which is an NF-κB inhibitor, reversed the effects induced by the knockdown of circRNA_CDKN1A in GBC-SD cells. In summary, the knockdown of circRNA_CDKN1A promoted the progression of GBC by activating the NF-κB signaling pathway. For the first time, this study revealed the mechanism of circRNA_CDKN1A-mediated regulatory action in GBC and identified the newly discovered circRNA_CDKN1A-NF-κB signaling axis as a potentially important candidate for clinical therapy and prognostic diagnosis of GBC.


Assuntos
Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , NF-kappa B/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular , MicroRNAs/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
9.
Cell Oncol (Dordr) ; 47(1): 245-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676377

RESUMO

PURPOSE: Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear. METHODS: NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay. RESULTS: The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways. CONCLUSION: RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma Pulmonar de Células não Pequenas , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas do Citoesqueleto , Neoplasias Pulmonares , Proteínas Nucleares , Animais , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Dano ao DNA , Reparo do DNA , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
10.
J Physiol Biochem ; 80(1): 113-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882938

RESUMO

The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.


Assuntos
Canais de Cálcio , Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Canais de Cátion TRPV , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
11.
Gastroenterology ; 166(2): 284-297.e11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734420

RESUMO

BACKGROUND & AIMS: T cells are crucial for the antitumor response against colorectal cancer (CRC). T-cell reactivity to CRC is nevertheless limited by T-cell exhaustion. However, molecular mechanisms regulating T-cell exhaustion are only poorly understood. METHODS: We investigated the functional role of cyclin-dependent kinase 1a (Cdkn1a or p21) in cluster of differentiation (CD) 4+ T cells using murine CRC models. Furthermore, we evaluated the expression of p21 in patients with stage I to IV CRC. In vitro coculture models were used to understand the effector function of p21-deficient CD4+ T cells. RESULTS: We observed that the activation of cell cycle regulator p21 is crucial for CD4+ T-cell cytotoxic function and that p21 deficiency in type 1 helper T cells (Th1) leads to increased tumor growth in murine CRC. Similarly, low p21 expression in CD4+ T cells infiltrated into tumors of CRC patients is associated with reduced cancer-related survival. In mouse models of CRC, p21-deficient Th1 cells show signs of exhaustion, where an accumulation of effector/effector memory T cells and CD27/CD28 loss are predominant. Immune reconstitution of tumor-bearing Rag1-/- mice using ex vivo-treated p21-deficient T cells with palbociclib, an inhibitor of cyclin-dependent kinase 4/6, restored cytotoxic function and prevented exhaustion of p21-deficient CD4+ T cells as a possible concept for future immunotherapy of human disease. CONCLUSIONS: Our data reveal the importance of p21 in controlling the cell cycle and preventing exhaustion of Th1 cells. Furthermore, we unveil the therapeutic potential of cyclin-dependent kinase inhibitors such as palbociclib to reduce T-cell exhaustion for future treatment of patients with colorectal cancer.


Assuntos
Neoplasias Colorretais , Células Th1 , Humanos , Animais , Camundongos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Imunidade , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo
12.
Cell Biol Int ; 48(3): 325-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108119

RESUMO

Deoxyribonuclease 1-like 3 (DNASE1L3) has been shown to play nonnegligible roles in several types of carcinomas. Nevertheless, the biological function, clinical relevance, and influence of DNASE1L3 in colorectal cancer (CRC) remain obscure. Immunohistochemistry was adopted to examine DNASE1L3 and CDKN1A expression in CRC tissue, and the clinical significance of DNASE1L3 was assessed. Cell counting kit-8, colony formation, and transwell assays were employed for assessing tumor proliferation and migration. The mechanisms underlying the impact of DNASE1L3 were explored via western blot analysis, co-immunoprecipitation, and ubiquitination assay. It was observed that DNASE1L3 was downregulated in CRC tissues and was tightly associated with patient prognosis. DNASE1L3 impaired CRC cell proliferation and migration through elevating CDKN1A via suppressing CDKN1A ubiquitination. Meanwhile, DNASE1L3 was positively related to CDKN1A. In mechanism, DNASE1L3 and CDKN1A interacted with the E3 ubiquitin ligase NEDD4. Moreover, DNASE1L3 was competitively bound to NEDD4, thus repressing NEDD4-mediated CDKN1A ubiquitination and degradation. These discoveries implied the potential mechanisms of DNASE1L3 during tumorigenesis, suggesting that DNASE1L3 may serve as a new potential therapeutic agent for CRC.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desoxirribonucleases/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Cell Rep ; 42(12): 113539, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38070134

RESUMO

Amino acids are required for cell growth and proliferation, but it remains unclear when and how amino acid availability impinges on the proliferation-quiescence decision. Here, we used time-lapse microscopy and single-cell tracking of cyclin-dependent kinase 2 (CDK2) activity to assess the response of individual cells to withdrawal of single amino acids and found strikingly different cell-cycle effects depending on the amino acid. For example, upon leucine withdrawal, MCF10A cells complete two cell cycles and then enter a CDK2-low quiescence, whereas lysine withdrawal causes immediate cell-cycle stalling. Methionine withdrawal triggers a restriction point phenotype similar to serum starvation or Mek inhibition: upon methionine withdrawal, cells complete their current cell cycle and enter a CDK2-low quiescence after mitosis. Modulation of restriction point regulators p21/p27 or cyclin D1 enables short-term rescue of proliferation under methionine and leucine withdrawal, and to a lesser extent lysine withdrawal, revealing a checkpoint connecting nutrient signaling to cell-cycle entry.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Aminoácidos , Leucina , Lisina , Ciclo Celular , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem do Ciclo Celular , Mitose , Metionina , Quinases relacionadas a CDC2 e CDC28/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
14.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139316

RESUMO

Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Apoptose/genética
15.
Sheng Li Xue Bao ; 75(6): 836-846, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151347

RESUMO

Aging is an independent risk factor for chronic diseases in the elderly, and understanding aging mechanisms is one of the keys to achieve early prevention and effective intervention for the diseases. Aging process is dynamic and systemic, making it difficult for mechanistic study. With recent advances in aging biomarkers and development of live-imaging technologies, more and more reporter mouse models have been generated, which can live monitor the aging process, and help investigate aging mechanisms at systemic level and develop intervention strategies. This review summarizes recent advances in live-imaging aging reporter mouse models based on widely used aging biomarkers (p16Ink4a, p21Waf1/Cip1, p53 and Glb1), and discusses their applications in aging research.


Assuntos
Envelhecimento , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Animais , Camundongos , Idoso , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Biomarcadores , Proteína Supressora de Tumor p53
16.
Commun Biol ; 6(1): 1196, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001355

RESUMO

Cells must accurately and quickly detect DNA damage through a set of checkpoint mechanisms that enable repair and control proliferation. Heterogeneous levels of cellular stress and noisy signaling processes can lead to phenotypic variability but little is known about their role in underlying proliferation heterogeneity. Here we study two previously published single cell datasets and find that cells encode heterogeneous levels of endogenous and exogenous DNA damage to shape proliferation heterogeneity at the population level. Using a comprehensive time series analysis of short- and long-term signaling dynamics of p53 and p21, we show that DNA damage levels are quantitatively translated into p53 and p21 signal parameters in a gradual manner. Analyzing instantaneous proliferation and signaling differences among equally-radiated cells, we identify time-localized changes in the period of p53 pulses that drive cells out of a low proliferative state. Our findings suggest a novel role of the p53-p21 network in quantitatively encoding DNA damage strength and fine-tuning proliferation trajectories.


Assuntos
Dano ao DNA , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Transdução de Sinais , Proliferação de Células
17.
Mol Cell ; 83(22): 4047-4061.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977117

RESUMO

CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.


Assuntos
Antineoplásicos , Neoplasias , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977118

RESUMO

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
19.
Biomed Environ Sci ; 36(10): 903-916, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37932059

RESUMO

Objective: To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation (IR). Methods: Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237 (MLN) and/or p21 depletion by small interfering RNA (siRNA). Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator (FUCCI) system combined with histone H3 phosphorylation at Ser10 (pS10 H3) detection. Senescence was assessed using senescence-associated-ß-galactosidase (SA-ß-Gal), Ki67, and γH2AX staining. Protein expression levels were determined using western blotting. Results: Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment. The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells, ultimately leading to senescence in G1. During this process, the p53/p21 pathway is hyperactivated. Accompanying p21 accumulation, Aurora A kinase levels declined sharply. MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction. Conclusion: Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation, leading to senescence via mitotic skipping.


Assuntos
Aurora Quinase A , Mitose , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Radiação Ionizante , RNA Interferente Pequeno/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
20.
Nat Commun ; 14(1): 7628, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993446

RESUMO

p53-mediated cell cycle arrest during DNA damage is dependent on the induction of p21 protein, encoded by the CDKN1A gene. p21 inhibits cyclin-dependent kinases required for cell cycle progression to guarantee accurate repair of DNA lesions. Hence, fine-tuning of p21 levels is crucial to preserve genomic stability. Currently, the multilayered regulation of p21 levels during DNA damage is not fully understood. Herein, we identify the human RNA binding motif protein 42 (RBM42) as a regulator of p21 levels during DNA damage. Genome-wide transcriptome and interactome analysis reveals that RBM42 alters the expression of p53-regulated genes during DNA damage. Specifically, we demonstrate that RBM42 facilitates CDKN1A splicing by counteracting the splicing inhibitory effect of RBM4 protein. Unexpectedly, we also show that RBM42, underpins translation of various splicing targets, including CDKN1A. Concordantly, transcriptome-wide mapping of RBM42-RNA interactions using eCLIP further substantiates the dual function of RBM42 in regulating splicing and translation of its target genes, including CDKN1A. Collectively, our data show that RBM42 couples splicing and translation machineries to fine-tune gene expression during DNA damage response.


Assuntos
Genes cdc , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...